Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials.
نویسندگان
چکیده
In the vertebrate embryo, the cephalic neural crest cells (CNCCs) produce cells belonging to two main lineages: the neural [including neurons, glial cells of the peripheral nervous system (PNS), and melanocytes] and the mesenchymal (chondrocytes, osteoblasts, smooth muscle cells, and connective tissue cells), whereas the trunk NCCs (TNCCs) in amniotes yield only neural derivatives. Although multipotent cells have previously been evidenced by in vitro clonal analysis, the issue as to whether all of the mesenchymal and neural phenotypes can be derived from a unique NC stem cell has remained elusive. In the present work, we devised culture conditions that led us to identify a highly multipotent NCC endowed with both neural and mesenchymal potentials, which lies upstream of all the other NC progenitors known so far. We found that addition of recombinant Sonic Hedgehog (Shh) increased the number of CNCC progenitors yielding both mesenchymal and neural lineages and promoted the development of such precursors from the TNCC. Shh decreased the neural-restricted precursors without affecting the overall CNCC survival and proliferation. By showing a differential positive effect of Shh on the expression of mesenchymal phenotypes (i.e., chondrocytes and smooth muscle cells) by multipotent CNCCs, these results shed insights on the in vivo requirement of Shh for craniofacial morphogenesis. Together with evolutionary considerations, these data also suggest that the mesenchymal-neural precursor represents the ancestral form of the NC stem cell, which in extinct forms of vertebrates (the ostracoderms) was able to yield both the PNS and superficial skeleton.
منابع مشابه
Neural crest progenitors and stem cells.
In the vertebrate embryo, multiple cell types originate from a common structure, the neural crest (NC), which forms at the dorsal tips of the neural epithelium. The NC gives rise to migratory cells that colonise a wide range of embryonic tissues and later differentiate into neurones and glial cells of the peripheral nervous system (PNS), pigment cells (melanocytes) in the skin and endocrine cel...
متن کاملHedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in t...
متن کاملNeural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.
Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate ...
متن کاملMultipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System
The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepith...
متن کاملNeural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development.
The dorsal domains of the neural tube and somites are transient embryonic epithelia; they constitute the source of neural crest progenitors that generate the peripheral nervous system, pigment cells and ectomesenchyme, and of the dermomyotome that develops into myocytes, dermis and vascular cells, respectively. Based on the variety of derivatives produced by each type of epithelium, a classical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 50 شماره
صفحات -
تاریخ انتشار 2007